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The problem of simultaneous development of velocity and tempera-
ture profiles in a two-dimensional tube is examined. The assumption
is made that the liquid viscosity depends on temperature, while the
other parameters are constant,

Some problems concerning the motion of an incom-
pressible liquid whose viscosity depends on tempera-
ture were examined in [1-4]. The present paper ex-
amines the stabilization of a uniform velocity profile.
For isothermal flow, a numerical solution was given
in [5] for the approximate equations describing the
development of the motion in a two-dimensional tube.

Under the usual assumptions the equations for the
development of velocity and temperature profiles in
a two-dimensional tube have the form [1, 2]
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v,=V, T=T, p=p, when x =0,
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v,=0,0v,=0, BIZ—T -~ BT =B when y = h,
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where h is the width of the tube, and V, Ty, @4, a,, A,
Bis By B are constants,

Let us examine numerical solution of system (1),
which would allow a solution to be found without fur-
ther simplification, We introduce dimensionless var-
iables according to

u=v/V, v=RevV, 1=yh, E=x/Reh,

6= (T*Tl)To, P=(p—po)/ pv?,

where Re =Vhop/uy; V, T,, T, are characteristic con-
stants,
We write

Pr=c po/h, m=pV¥aTyJ.

We assume the dependence of viscosity on the tem-
perature of the liquid is expressed by v = g, exp (—ad)
when « = const, System (1) may then be written in the
form
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Replacing the derivatives by finite-difference re-
lIations, as is done in solving boundary layer equa-
tions, we obtain instead of (2) the finite-difference
system

unx.k—uf.k_}_v Yiped —Hip—1 _

At T 9 A

= (exp (—ab;.1, 412) Upsty o1 H€XP (=300, pm1i0) U, o1 —

Ui

—{exp{—adi.1e02)+

1 oP
exp (—ad v =12 Uy j———
+exp( teta—12) U1 ) (AP (02 )”1

A .
Uity e =Uig1, g—1— %%g [ui+l.k—l+uz+1, r—
— (U, g8 1))
pr(ul.k 61‘#1.& el k +u ‘kﬁl Ryl e: k—1 )=
Ak 2An
= Bt -1 2800, n
(Any
Uppsr—Hp—1 |2
mexp(—ad; —_r 3
Hmexp( ao.k)( = ) @)

with appropriate boundary conditions. System (3) de-
termines the solution at the points of the rectangular
net & =iAbm, = kAn (i=1,2,3,...; k=0,1,2,..., K),
where 814212 = (8,41+9,,)/2. For known values 4, ,
;,», &, x we find the quantities @, , from the third
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Fig. 1. Velocity profiles in a two-dimensional tube with
£=0.05 Pr=100, m=0.1, 1HYk=1, o =2;2)k =1,
a=2;3)a=0,
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Fig. 2. Temperature profiles ¢ = (T ~ Ty)/Ty at various

distances from the inlet, under asymmetric heating and

Pr=100, @ =2, m=0, £=0,0025 (1); 0.05 (2); and
3.9 (3).
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equation of system (3). Thereafter, the first equation
of (3) may be put in the form
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Fig. 3. Velocity profiles at different distances

from the inlet with asymmetrical heating Pr =

=100, o =2, m =0, and £ = 0.0025 (1); 0.01
(2); 0.05 (3); 3.9 (4).

Values of the quantities M, ,, Vo1 Civt e Divcto o
E,,., are known, We seek a solution of (4) in the form
P

Ui = W5 - Eprg (*7‘) . ®)
I /i

The quantities w,. , and z,,, , satisfy the difference
equations
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with zero boundary conditions, Integrating the second
equation of (2) over the width of the tube, we obtain
the condition for constant mass flowrate:
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where g is a known constant, Replacing the integral
in this condition by a finite sum according to the quad-
rature formula and using (5), we obtain the condition
for determining the pressure derivative:
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The trapezoid formula was used in (8),

From (5) we find the quantity «, , . and from the
second equation of (3) the quantity ©,.,,. Thereafter
we proceed to determine the quantities in the follow-
ing row, The difference systems were solved by the
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pivotal condensation method, Calculations were done
for constant liquid temperature at the inlet (Ty) and
constant wall temperature (T;), the quantity k = (T, —
— Ty)/Ty assuming different values, Since the viscos-
ity depends on temperature, the length of the section
in which complete hydrodynamic stabilization occurs
is the same as that for thermal stabilization, but in
the case of isothermal flow when Pr > 1 it is greater
than the length for thermal stabilization, Since when
£ — o the liquid assumes a temperature close to that
of the walls (the dissipation effect at the values of the
parameters chosen here is small), the velocity pro-
files, even for large values of the variable £, are
close to parabolic,

The whole interval of velocity variation may be
divided into two parts. In the first part (upto { =
~ 0,05) the velocity profile is observed to change
rapidly from being uniform at the inlet section to
some profile corresponding to different temperatures
of flow core and layer near the wall, The length of
this section is close to that for hydrodynamic stabili-
zation in isothermal flow and does not alter much for
various temperature conditions (Fig. 1). In the sec~
ond section there occurs a simultaneous slow change
of velocity and temperature profiles, terminating at
the end of thermal stabilization.

At the usual values of the parameters, the effect
of dissipation on the nature of the initial section
proves to be small, and in some calculations it is as-
sumed that m = 0, Calculations were carried out for
values of the parameters for which there exists a
stable solution limiting with respect to ¢ [6].
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Fig. 4. Temperature profiles for constant heat
flux through the wall, Pr = 100, ¢ =2, m =0,

and £ = 0.1 (1); 10 (2); 30 (3); 54.5 (4).

A calculation was also done for the case when the
wall of a two-dimensional channel is maintained at
various temperatures different from that of the liquid
at the tube inlet, the temperature of one wall being
above and that of the other being below the inlet tem-
perature of the liquid. The velocity profile in this
case changes from being uniform at the inlet to some
asymmetrical profile, the asymmetry being deter-
mined by the dependence of viscosity on temperature
in conformity with the change of temperature profile
(Figs. 2 and 3). A calculation was also carried out
for constant heat flux through the tube walls, given by
the condition
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In this case the dimensionless temperature is de-
termined by the formula

B = (T — T/Qh,
which leads to the boundary condition

gﬂ—: I when 4 = 0, %ﬁ—= 0 when v — 0.5.

o "

The calculations were carried out for Q > 0, i.e.,
for uniform two~sided cooling of the liquid. Since the
liquid temperature close to the inlet differs liftle from
its value at the inlet, the velocity profile changes
from being uniform to near-parabolic. Later on, a
slow change of velocity profile takes place, in ac-
cordance with the change of temperature profile, At
some distance from the inlet section the temperature
profiles change, while remaining similar, but the ve-
locity profiles at a given mass flowrate do not change
(Fig. 4).

In the calculations steps Af and An were subdivided
until the results agreed to three significant figures.
At Pr > 1 the third equation of (2) has a small param-
eter in the leading derivative. We shall examine the
model equation

where A = const, B = const. In this case the scheme
employed in the present paper is close to the scheme

B Ve B Bpa—dm
AL A 2 Ay

which is stable when BAg/A(An) = const[7].
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When there is ¢ooling of the liquid, the quantity
v/u is large in the wall layer in the initial section,
and when the value of Ay is reduced, a considerable
reduction in Af occurs (we note that in these condi-
tions there is no justification for simplifying the orig-
inal system of Navier-Stokes equations).

NOTATION

Vx, vrvelocity components; p—pressure; T—
temperature; u—viscosity; J—mechanical equivalent
of heat; h—width of tube; V—characteristic velocity;
Ty, Ty—temperature of wall and of liquid at inlet; u,
v—components of dimensionless velocity; P—dimen-
sionless pressure; $—dimensionless temperature;
£, n—dimensionless coordinates; g—dimensionless
mass flowrate; oy, @y, A, By, By, B—arbitrary con-
stants; o—exponent in viscosity~temperature rela~
tion.
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